有機硅化學及其特性

                2022-12-12 10:17:45

                硅與碳雖然位于周期表的同一主族內,具有相似的化學性質,但是硅在第三周期,碳在第二周期,故又存在著一定差別。

                硅和碳元素的性質比較

                項目
                CSi
                原子半徑,pm
                91.4117.6
                第一電離能,kJ/mol
                1092791
                電負性2.51.8
                金屬性
                非金屬準金屬
                原子價鍵
                44
                配價鍵
                46
                鍵型單鍵,雙鍵,三鍵
                只有單鍵
                生成烷烴類

                碳烷CnH2n+2

                n可以大于1000

                硅烷 SinH2n+2

                n<=6

                與低電負性元素結合的鍵能(如H及C)

                C-H 414kJ/mol

                C-C 347kJ/mol

                Si-H 292.9kJ/mol

                Si-C 296

                其鍵能比C和同類元素結合的鍵能要低

                與高電負性元素結合的鍵能(如O,Cl)

                C-O 351kJ/mol

                C-Cl 331kJ/mol

                Si-O 443 5kJ/mol

                Si-Cl 358.6kJ/mol

                其鍵能比C和同類元素結合的鍵能高


                高聚物受熱裂解屬于均裂的游離基反應,因此高聚物對熱的穩定性,其分子中原子間的共價鍵能大小是主要決定因素;數據比較見下表:


                一些原子間共價鍵鍵能、相對電負性差數和離子性能比較

                共價鍵鍵能,kJ/mol
                相對電負性差數
                離子性,%
                C-C34700
                C-H4140.44
                C-N2930.56
                C-Cl3310.56
                C-F4851.543
                C-O3511.022
                Si-Si17700
                Si-C2900.712
                Si-H292.90.32
                Si-N4351.230
                Si-Cl358.61.230
                Si-F
                5411.543
                Si-O443.51.751


                Si-O-Si鍵對硅原子上連接的烴基受熱氧化起屏蔽作用,作用大小隨烴基大小和性質有所不同,如為乙基,其裂解溫度比甲基低;苯基、乙烯基則比甲基耐熱性能好。


                烴基-硅鍵中Si-C的共價鍵能

                R-Si鍵
                Si-C的共價鍵能,kJ/mol
                H3C-Si314
                H5C2-Si259
                正H9C4-Si222
                H2C=CH-Si297


                然而,在理解某種鍵的化學行為時,僅參考其鍵能數據是不夠的,尤其是在異裂反應中。由于兩種不同元素的原子對電子的吸引力不完全相同,因此不同種類原子間的共價鍵總是極性的。


                極性大小可以用參與成鍵的兩原子的相對電負性的差數來說明,兩元素間電負性的差數愈大,鍵的離子性也就愈大。


                原子間的共價鍵鍵能愈大,耐熱性能愈好,愈不易受熱裂解;但若鍵的離子性愈大,則愈易受親核及親電子試劑的進攻而斷鍵(異裂反應)。如耐熱的有機硅高聚物中的Si-O鍵極性大,離子性為51%,雖然能耐高溫,但在親核或親電子試劑的攻擊下,Si-O-Si鍵,易于斷裂,故其對化學藥品的穩定性相對來說并不太好。其程度受硅原子上所連基團的種類、性質和數量的影響很大。


                如所連基團為電子給予體(甲基、乙基等),則Si-O-Si鏈減弱,Si-C鍵增強,在親核或親電子試劑的攻擊下,Si-O-Si鏈易于斷裂;反之,所連基團為電子接受體(如苯基、氯代甲基等),則Si-O-Si鏈增強,Si-C鍵減弱,在親核或親電子試劑的攻擊下,Si-C鍵易于斷裂,例如八甲基環四硅氧烷很容易在酸性白土催化劑存在下,進行分子間開環重排反應,而八苯基環四硅氧烷則完全不受影響;在烴(芳烴基)基氯硅烷水解時,若水中鹽酸濃度過高,硅原子上所連苯基易于掉落,但甲基則較穩定,都說明了這個問題。


                硅元素的電負性小于碳元素,原子半徑大于碳元素,性質介乎金屬與非金屬之間,硅原子的電子層高極性化,因此在化學性能上硅元素和碳元素有很多差別。


                ① C-C鍵穩定,能生成以C-C鍵為主鏈的高分子有機聚合物;

                Si-Si鍵不穩定,在Si-Si鍵的化合物中Si原子數不能超過6個。


                ② CH4性質穩定;但SiH4很易水解,其水解性隨H原子被烴基逐步取代而降低,這點恰和CH4相反。


                ③ Si-H鍵的反應活性比C-H鍵大。


                ④ Si-Cl鍵比C-C1鍵更易離子化,這就決定了Si-Cl鍵在許多化學反應中的高活性,對極性試劑反應劇烈。Si-Cl鍵很易水解,生成SiOH基團,這種基團也很易脫水縮聚,生成具有Si-O-Si鍵、性質穩定的低聚物或高聚物。這是制備有機硅高聚物的典型方法。

                有機硅高聚物以Si-O鍵為主鏈,其耐熱性好。這是由于:


                ①在有機硅高聚物中Si-O鍵的鍵能比普通有機高聚物中的C-C鍵鍵能大;鍵能愈大,熱穩定性愈好。


                ②在Si-O鍵中硅原子和氧原子的相對電負性差數大,因此Si-O鍵極性大,有51%離子化傾向。對Si原子上連接的烴基有偶極感應影響,提高了所聯烴基對氧化作用的穩定性,比普通有機高聚物中這種相同基團的穩定性要高得多;也就是說Si-O-Si鍵對這些烴基基團的氧化,能起到屏蔽作用。


                ③在有機硅高聚物中硅原子和氧原子形成d-pπ鍵,增加了高聚物的穩定性、鍵強,也增加了熱穩定性。


                ④普通有機高聚物的C-C鍵受熱氧化易斷裂為低分子物;而有機硅高聚物中硅原子上所連烴基受熱氧化后,生成的是高度交聯的更加穩定的Si-O-Si鍵,能防止其主鏈的斷裂降解。


                ⑤在受熱氧化時,有機硅高聚物表面生成了富于Si-O-Si鍵的穩定保護層,減輕了對高聚物內部的影響。例如聚二甲基硅氧烷在250℃時僅輕微裂解,Si-O-Si主鏈要到350℃才開始斷裂;而一般有機高聚物早已全部裂解,失掉使用性能。

                因此有機硅高聚物具有特殊的熱穩定性。


                有機硅產品含有Si-O鍵,在這一點上基本與形成硅酸和硅酸鹽的無機物結構單元相同;同時又含有Si-C(烴基),而具有部分有機物的性質,是介于有機和無機聚合物之間的聚合物。由于這種雙重性,使有機硅聚合物除具有一般無機物的耐熱性、耐燃性及堅硬性等特性外,又有絕緣性、熱塑性和可溶性等有機聚合物的特性,因此被人們稱為半無機聚合物。



                上一篇 下一篇

                揚州市立達樹脂有限公司 版權所有(C) 2015 技術支持:揚州宏瑞科技 備案序號:蘇ICP備14030910號-1

                香蕉伊中文在线香蕉伊,国产精品一级AAAA在线看,国产视频国产小视频99,两个人的免费视频完整版